Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            Recently, the manufacturing of porous polydimethylsiloxane (PDMS) with engineered porosity has gained considerable interest due to its tunable material properties and diverse applications. An innovative approach to control the porosity of PDMS is to use transient liquid phase water to improve its mechanical properties, which has been explored in this work. Adjusting the ratios of deionized water to the PDMS precursor during blending and subsequent curing processes allows for controlled porosity, yielding water emulsion foam with tailored properties. The PDMS-to-water weight ratios were engineered ranging from 100:0 to 10:90, with the 65:35 specimen exhibiting the best mechanical properties with a Young’s Modulus of 1.17 MPa, energy absorption of 0.33 MPa, and compressive strength of 3.50 MPa. This led to a porous sample exhibiting a 31.46% increase in the modulus of elasticity over a bulk PDMS sample. Dowsil SE 1700 was then added, improving the storage capabilities of the precursor. The optimal storage temperature was probed, with −60 °C resulting in great pore stability throughout a three-week duration. The possibility of using these water emulsion foams for paste extrusion additive manufacturing (AM) was also analyzed by implementing a rheological modifier, fumed silica. Fumed silica’s impact on viscosity was examined, revealing that 9 wt% of silica demonstrates optimal rheological behaviors for AM, bearing a viscosity of 10,290 Pa·s while demonstrating shear-thinning and thixotropic behavior. This study suggests that water can be used as pore-formers for PDMS in conjunction with AM to produce engineered materials and structures for aerospace, medical, and defense industries as sensors, microfluidic devices, and lightweight structures.more » « less
- 
            Abstract Early life adversity predicts shorter adult lifespan in several animal taxa. Yet, work on long‐lived primate populations suggests the evolution of mechanisms that contribute to resiliency and long lives despite early life insults. Here, we tested associations between individual and cumulative early life adversity and lifespan on rhesus macaques at the Cayo Santiago Biological Field Station using 50 years of demographic data. We performed sex‐specific survival analyses at different life stages to contrast short‐term effects of adversity (i.e., infant survival) with long‐term effects (i.e., adult survival). Female infants showed vulnerability to multiple adversities at birth, but affected females who survived to adulthood experienced a reduced risk later in life. In contrast, male infants showed vulnerability to a lower number of adversities at birth, but those who survived to adulthood were negatively affected by both early life individual and cumulative adversity. Our study shows profound immediate effects of insults on female infant cohorts and suggests that affected female adults are more robust. In contrast, adult males who experienced harsh conditions early in life showed an increased mortality risk at older ages as expected from hypotheses within the life course perspective. Our analysis suggests sex‐specific selection pressures on life histories and highlights the need for studies addressing the effects of early life adversity across multiple life stages.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
